Matrix Factorization and Matrix Concentration

نویسنده

  • Lester Mackey
چکیده

Matrix Factorization and Matrix Concentration by Lester Wayne Mackey II Doctor of Philosophy in Electrical Engineering and Computer Sciences with the Designated Emphasis in Communication, Computation, and Statistics University of California, Berkeley Professor Michael I. Jordan, Chair Motivated by the constrained factorization problems of sparse principal components analysis (PCA) for gene expression modeling, low-rank matrix completion for recommender systems, and robust matrix factorization for video surveillance, this dissertation explores the modeling, methodology, and theory of matrix factorization. We begin by exposing the theoretical and empirical shortcomings of standard deflation techniques for sparse PCA and developing alternative methodology more suitable for deflation with sparse “pseudo-eigenvectors.” We then explicitly reformulate the sparse PCA optimization problem and derive a generalized deflation procedure that typically outperforms more standard techniques on real-world datasets. We next develop a fully Bayesian matrix completion framework for integrating the complementary approaches of discrete mixed membership modeling and continuous matrix factorization. We introduce two Mixed Membership Matrix Factorization (M3F) models, develop highly parallelizable Gibbs sampling inference procedures, and find that M3F is both more parsimonious and more accurate than state-of-the-art baselines on real-world collaborative filtering datasets. Our third contribution is Divide-Factor-Combine (DFC), a parallel divide-and-conquer framework for boosting the scalability of a matrix completion or robust matrix factorization algorithm while retaining its theoretical guarantees. Our experiments demonstrate the nearlinear to super-linear speed-ups attainable with this approach, and our analysis shows that DFC enjoys high-probability recovery guarantees comparable to those of its base algorithm. Finally, inspired by the analyses of matrix completion and randomized factorization procedures, we show how Stein’s method of exchangeable pairs can be used to derive concentration inequalities for matrix-valued random elements. As an immediate consequence, we obtain analogues of classical moment inequalities and exponential tail inequalities for

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Riordan group approaches in matrix factorizations

In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012